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The first approach to optically active 2,2 0-bipyridine alkyl sulfoxides q
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Abstract

The synthesis of 6,6 0-bis(alkylsulfanyl)-2,2 0-bipyridines and their asymmetric oxidation to non-racemic 2,2 0-bipyridine alkyl sulfoxides
using either (+)-(8,8-dichlorocamphorylsulfonyl)oxaziridine or a modified Sharpless reagent is reported.
� 2007 Elsevier Ltd. All rights reserved.
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Recently, a number of chiral 2,2 0-bipyridines have been
prepared and tested in a variety of asymmetric reactions.1

In addition to their applications as ligands in transition
metal catalysis, chiral 2,2 0-bipyridine bis N-oxides have
been employed as selective organocatalysts in metal free
reactions.2 Most of the synthetic approaches to chiral
2,2 0-bipyridines are based on the transition metal catalyzed
heteroaryl homo-coupling and cross-coupling reactions of
chiral halopyridines,1–3 or Kröhnke-type synthesis from
pyridinium salts and chiral a,b-unsaturated ketones,4

which often require multistep procedures. In contrast, the
introduction of chirality to the 2,2 0-bipyridine framework
by secondary functionalization of substituents directly
attached to bipyridine rings has not received much atten-
tion. Examples in the literature refer mostly to the amidifi-
cation of mono and dicarboxy 2,2 0-bipyridines with amino
acids5,6 or non-racemic amines,7 esterification with (�)-
menthol,8 and lipase-catalyzed enantioselective acetylation
of 1-[(2,2 0-bipyridyl)] ethanol.9 The chirality could also be
introduced into the 2,2 0-bipyridine core via nucleophilic
halide substitution or the modification of a carbonyl group
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as indicated by the preparation of ligands bearing camphor
sultam moieties10 or bis-oxazolidine substituents.11 The
limited use of these approaches for the preparation of
chiral 2,2 0-bipyridines may be due to the lack of suitable
substituents on the 2,2 0-bipyridine precursors or efficient
methods for their synthesis.

We have recently developed a simple route to 2,2 0-bipyr-
idine alkyl sulfides12 and now report their application to
the synthesis of previously unknown chiral 2,2 0-bipyridine
mono- and bis(sulfoxide)s via direct asymmetric oxidation.
Due to the presence of a good coordinating sulfinyl moi-
ety,136,6 0-mono- and bis-sulfinyl 2,2 0-bipyridines may con-
stitute a new group of chiral catalysts in asymmetric
reactions.

The synthesis of 2,2 0-bipyridine alkyl sulfides 3a–c is
based on Diels–Alder/retro Diels–Alder reaction of easily
accessible alkyl sulfides of 5,5 0-bi-1,2,4-triazines 2a–c with
norbornadiene as outlined in Scheme 1.14a–c As an exten-
sion of this investigation the functionalized sulfides 6 and
7 could be conveniently prepared in high yields under
non-basic conditions by heating methyl sulfide 3a with
ethyl haloacetates 4a–c and benzyl halides 5a–b, respec-
tively.15 Both S-transalkylation reactions proceed via reac-
tive sulfonium salts, 6a and 7a, which undergo methyl
group removal by the halides present in the reaction mix-
ture.16 Reactions of 3a with ethyl iodoacetate 4a or ethyl
bromoacetate 4b proceeded much faster than the analo-
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Scheme 1. Synthesis of sulfides 3a–c, 6 and 7.
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gous reaction of 3a with ethyl chloroacetate 4c. Likewise,
demethylation of 3a with benzyl bromide 5a gave com-
pound 7 almost quantitatively, within 2 h. However, the
formation of 7 by reaction of 3a with benzyl chloride 5b

was less favourable and needed forty five hours for comple-
tion. As expected, a similar order of reactivity was
observed on treatment of 3b (R = C2H5) or 3c (R = i-
C3H7) with ethyl bromoacetate 4b and benzyl bromide 5a

giving compounds 6 and 7 in reasonable yields (Scheme
1, Table 1).

With the 2,2 0-bipyridine alkyl sulfides in hand we next
evaluated their asymmetric sulfoxidation. Among the most
convenient and efficient methods for achieving high enanti-
oselectivity during oxidation of prochiral sulfides are the
catalytic reactions described by Kagan and co-workers17

who modified the Sharpless reagent, and with the chiral
oxaziridine developed by Davis et al.18 In addition, biolog-
ical oxidants such as enzymes, yeasts and microorganisms
can also be considered.19 We report here the results
obtained on the asymmetric oxidations of alkyl 2,2 0-bipyri-
dine sulfides 3a–c, 6 and 7 using (+)-(8,8-dichloro-
Table 1
Synthesis of compounds 6 and 7

Compound Halide X Time [h] Sulfide Yield [%]

3a 4a I 1 6 91
3a 4b Br 8 6 98
3a 4c Cl 20 6 75
3a 5a Br 2 7 95
3a 5b Cl 45 7 60
3b 4b Br 13 6 60
3c 5a Br 8 7 76
camphorylsulfonyl) oxaziridine20 (Method A) or Kagan
conditions21 (Method B), consisting of formation of a com-
plex between titanium(IV) isopropoxide, (R,R)-(+)-diethyl
tartrate (D-DET), H2O and tert-butylhydroperoxide
(TBHP). The reactions were performed in methylene
chloride giving the corresponding mono-sulfoxides 8a–e,
accompanied by small amounts of bis oxidation products
9a–e (Table 2).

Comparison of the two methods showed that better ees
were obtained using Kagan’s conditions. High enantio-
meric excesses were never obtained for sulfoxides 8d and
9d bearing an electron-withdrawing group on the sulfur,
whatever the method used. The highest enantioselectivity
was obtained for bis sulfoxide 9a (99% ee). The absolute
configuration at both sulfur atoms in 9a was confirmed
by X-ray analysis.22

To investigate the catalytic properties of chiral mono-
sulfoxide 8a and bis-sulfoxides 9c and 9d obtained here,
the asymmetric addition of diethylzinc to benzaldehyde
10 was carried out in benzene or toluene.23 The results
on the catalyst efficiencies and the enantiomeric excess of
the resulting 1-phenyl-1-propanol 11 are presented in Table
3. Although the catalytic efficiency of ligand 8a was poor,
those of ligands 9c and 9d possessing a bis-sulfinyl func-
tionality were promising. Ligand 9d which has only 17%
ee provided the chiral product 11 with 11% ee. This enanti-
oselectivity is probably due to the presence of two sulfinyl
groups in 9d which better coordinate the metal ion. These
results may thus provide impetus for further development
of more selective catalysts in this series. Work in this direc-
tion is underway in our laboratories.

In summary, the synthetic protocol described herein
provides an expedient access to a novel family of optically



Table 2
Asymmetric oxidation of sulfides by the Davis and Kagan methods
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Substrate R Product Method Yield [%] ee [%] Product Yield [%] ee [%]

3a –CH3 8a
Aa 54 47c

9a
8 42c

Bb 40 70 13 >99c

3b –C2H5 8b
Aa 52 76d

9be

Bb 41 82d

3c –CH(CH3)2 8c
Aa 36 51c

9c
11 22d

Bb 42 54d 9 27d

6 –CH2CO2C2H5 8d
Aa 41 5d

9d 12 17d

Bb 45 14d 26 12d

7 –CH2Ph 8e
Aa 61 15d

9e 23 40d

B 35 62d 17 5d

a Davis method.
b Kagan method.
c ee was determined by 1H NMR using the CSA method.24

d ee was determined by HPLC analysis using a chiral stationary phase column (Chirobiotic T).
e Bis sulfoxide 9b was not isolated.

Table 3
Enantioselective diethylzinc addition to benzaldehyde 10

CHO

Et2Zn

C2H5OH
*

L*

benzene/toluene

10 11

L* ee [%] Amount of ligand
(mol %)

Time
[days]

Solvent Yield
[%]

ee [%]

8a 54 2.5 6 Toluene 40 14 (26)a

9c 22 2.5 5 Benzene 41 14 (64)a

9d 17 3 5 Benzene 35 11 (68)a

L*: Ligands 8a, 9c,d.
a Calculated ee based on pure catalyst.
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active 2,2 0-bipyridine alkyl sulfoxides from readily accessi-
ble 2,2 0-bipyridine alkyl sulfides.
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